Dahsyatnya Elektromagnetik

  • Posted: 00.20
  • |
  • Author: Unknown


  Begitu dahsyatnya sehingga para ilmuwan di NASA (National Aeronautics and Space Admistration) mulai berpikir untuk memanfaatkannya sebagai tenaga yang bisa ‘melemparkan’ pesawat luar angkasa ke luar atmosfer bumi! Kenapa sampai muncul ide ini? Bukankah mesin roket yang biasanya digunakan untuk mengirim pesawat-pesawat ke luar bumi sudah cukup berhasil? Sebenarnya semua mesin roket yang sudah digunakan maupun yang sedang dikembangkan saat ini tetap membutuhkan bahan khusus sebagai pendorongnya. Bahan-bahan propellant ini bisa berupa bahan kimia seperti yang sudah banyak digunakan, bisa juga berupa hasil reaksi fusi nuklir yang teknologinya dikembangkan di awal abad 21 ini. Ada lagi berbagai teknologi inovatif seperti light propulsion dan antimatter propulsion.

Penggunaan propellant ini sebenarnya sangat membatasi kecepatan dan jarak maksimum yang dapat dicapai pesawat. Karena itulah muncul ide untuk mengirimkan pesawat luar
angkasa menggunakan teknologi yang sama sekali tidak melibatkan propellant. Sistem apa yang bisa ‘melemparkan’ pesawat yang begitu besar dan berat ke luar angkasa tanpa menggunakan propellant sama sekali? Hanya Elektromagnetika yang bisa menjawabnya!

Elektromagnetika merupakan penggabungan listrik dan magnet. Sewaktu kita mengalirkan listrik pada sebuah kawat kita bisa menciptakan medan magnet. Listrik dan magnet benar-benar tidak terpisahkan kecuali dalam superkonduktor tipe I yang menunjukkan Efek Meissner (bahan superkonduktor dapat meniadakan medan magnet sampai pada batas tertentu). Ini bisa dibuktikan dengan cara meletakkan kompas di dekat kawat tersebut. Jarum penunjuk pada kompas akan bergerak karena kompas mendeteksi adanya medan magnet. Elektromagnetika
sudah banyak dimanfaatkan dalam membuat mesin motor, kaset, video, speaker (alat pengeras suara), dan sebagainya. Sekarang giliran proyek luar angkasa yang ingin memanfaatkan kedahsyatannya!

David Goodwin dari Office of High Energy and Nuclear Physics di Amerika adalah orang yang mengusulkan ide electromagnetic propulsion ini. Saat sebuah elektromagnet didinginkan sampai suhu sangat rendah terjadi sesuatu yang ‘tidak biasa’. Jika kita mengalirkan listrik pada magnet yang super dingin tersebut kita bisa mengamati terjadinya getaran (vibration) selama beberapa nanodetik (1nanodetik = 10-9 detik) sebelum magnet itu menjadi superkonduktor. Menurut Goodwin, walaupun getaran ini terjadi hanya selama beberapa nanodetik saja, kita tetap dapat memanfaatkan keadaan unsteady state (belum tercapainya keadaan tunak) ini. Jika getaran-getaran yang tercipta ini dapat diarahkan ke satu arah yang sama maka kita bisa mendapatkan kekuatan yang cukup untuk ‘melempar’ sebuah pesawat ruang angkasa. Kekuatan ini tidak hanya cukup untuk ‘melempar’ secara asal-asalan, tetapi justru pesawat ruang angkasa bisa mencapai jarak maksimum yang lebih jauh dengan kecepatan yang lebih tinggi dari segala macam pesawat yang menggunakan propellant.

Untuk menerangkan idenya, Goodwin menggunakan kumparan kawat (solenoid) yang disusun dari kawat magnet superkonduktor yang dililitkan pada batang logam berbentuk silinder. Kawat magnetik yang digunakan adalah logam paduan niobium dan timah. Elektromagnet ini menjadi bahan superkonduktor setelah didinginkan menggunakan helium cair sampai temperatur 4 K (-269oC). Pelat logam di bawah solenoida berfungsi untuk memperkuat getaran yang tercipta. Supaya terjadi getaran dengan frekuensi 400.000 Hz, perlu diciptakan kondisi asimetri pada medan magnet. Pelat logam (bisa terbuat dari bahan logam aluminium atau tembaga) yang sudah diberi tegangan ini diletakkan secara terpisah (isolated) dari sistem solenoida supaya tercipta kondisi asimetri.

Selama beberapa mikrodetik sebelum magnet mulai berosilasi ke arah yang berlawanan, listrik yang ada di pelat logam harus dihilangkan. Tantangan utama yang masih harus diatasi adalah teknik untuk mengarahkan getaran-getaran yang terbentuk pada kondisi unsteady ini supaya semuanya bergerak pada satu arah yang sama. Untuk itu kita membutuhkan alat
semacam saklar (solid-state switch) yang bisa menyalakan dan mematikan listrik 400.000 kali per detik (yaitu sesuai dengan frekuensi getaran). Solid-state switch ini pada dasarnya bertugas untuk mengambil energi dari keadaan tunak dan mengubahnya menjadi pulsa listrik kecepatan tinggi (dan mengandung energi tinggi) sampai 400.000 kali per detiknya.
Energi yang digunakan untuk sistem elektromagnetik ini berasal dari reaktor nuklir (300 kW) milik NASA. Reaktor ini menghasilkan energi panas melalui reaksi fisi nuklir. Reaksi fisi nuklir ini melibatkan proses pembelahan atom yang disertai radiasi sinar gamma dan pelepasan kalor (energi panas) dalam jumlah sangat besar. Reaktor nuklir yang menggunakan ¾ kg uranium (U-235) bisa menghasilkan kalor yang jumlahnya sama dengan kalor yang dihasilkan oleh pembakaran 1 juta galon bensin (3,8 juta liter). Energi panas yang dihasilkan
reaktor nuklir ini kemudian dikonversi menjadi energi listrik yang bisa digunakan untuk sistem electromagnetic propulsion ini. Ketika digunakan dalam pesawat luar angkasa, ¾ kg uranium sama sekali tidak memakan tempat karena hanya membutuhkan ruangan sebesar bola baseball. Dengan massa dan kebutuhan ruang yang jauh lebih kecil dibandingkan mesin roket yang biasanya digunakan untuk mengirim pesawat ke luar angkasa, pesawat yang menggunakan sistem elektromagnetik ini dapat mencapai kecepatan maksimal yang jauh lebih tinggi
sehingga bisa mencapai lokasi yang lebih jauh pula.

Menurut Goodwin pesawat dengan teknologi elektromagnetik ini dapat mencapai titik heliopause yang merupakan tempat pertemuan angin yang berasal dari matahari (solar wind) dengan angin yang berasal dari bintang di luar sistem tatasurya kita (interstellar solar wind). Heliopause terletak pada jarak sekitar 200 AU (Astronomical Unit) dari matahari. 1 AU merupakan jarak rata-rata bumi dari matahari yaitu sekitar 1,5.108 km. Planet terjauh dalam sistem tatasurya kita saja hanya berjarak 39,53 AU dari matahari. Semua pesawat luar angkasa yang menggunakan propellant tidak bisa mencapai jarak sejauh itu!

Tentu saja pesawat yang dipersenjatai elektromagnetik yang dahsyat ini masih sangat jauh dari sistem ideal yang kita inginkan. Karena walaupun pesawatnya bisa mencapai kecepatan sangat tinggi, kecepatan itu masih sangat kecil dibandingkan kecepatan cahaya (300.000 km per detik). Kecepatan maksimum yang bisa dicapai sistem ini masih di bawah 1% kecepatan cahaya. Padahal bintang yang terdekat dengan sistem tatasurya kita berada pada jarak lebih dari 4 tahun cahaya (1 tahun cahaya = 300.000 km/detik x 60 detik/menit x 60 menit/jam x 24 jam/hari x 365 hari/tahun = 9,4608.1012 km). Perjalanan terjauh yang pernah ditempuh manusia adalah 400.000 km (yaitu perjalanan ke bulan).

Jika kita ingin mengirim pesawat tanpa awak pun kita masih membutuhkan ratusan tahun sebelum pesawat tersebut bisa mencapai bintang terdekat. Itu pun karena pesawatnya menggunakan teknologi elektromagnetik! Dengan pesawat yang menggunakan propellant bahan kimia kita baru bisa mencapai bintang terdekat dalam waktu puluhan ribu tahun. Jika kita ingin mencapai bintang terdekat dalam waktu lebih cepat seperti dalam film Star Trek kita membutuhkan teknologi yang bisa melampaui kecepatan cahaya. Selama teknologi itu masih
belum bisa dikembangkan, kita bisa memanfaatkan dulu teknologielektromagnetik yang ternyata memberikan alternatif yang cukup menjanjikan walaupun belum bisa mewujudkan impian kita untuk menjelajahi jagad raya.

Teori Waktu Dari Einstein

  • Posted: 00.19
  • |
  • Author: Unknown


 
Pernah merasa waktu berjalan cepat atau terasa begitu lambat? Seperti saat waktu berlalu begitu cepat ketika Anda sedang bersama teman- teman atau saat waktu terasa begitu lambat ketika Anda terjebak dalam hujan. Tapi Anda tidak bisa mempercepat atau memperlambat waktu kan?

Waktu selalu berjalan dalam kecepatan yang konstan. Einstein tidak berpikir demikian. Ide dia adalah semakin kita mendekati kecepatan cahaya, semakin lambat waktunya relatif dibandingkan kondisi orang yang tidak bergerak. Dia menyebutnya melambatnya waktu karena gerakan. Tidak mungkin, kamu bilang? Oke, bayangkan ini. Kamu berdiri di bumi, memegang jam. Teman baikmu ada di dalam roket dengan kecepatan 250.000 km/detik. Temanmu juga memegang sebuah jam. Kalau kamu bisa melihat jam yang dibawa temanmu, kamu akan melihat bahwa jam itu tampak berjalan lebih lambat daripada jam kamu. Sebaliknya temanmu akan merasa jam yang ia bawa berjalan biasa2 aja (tidak melambat), dia pikir malah jam kamu yang tampak berjalan lebih lambat.

Masih bingung? Ingat, Einstein butuh 8 tahun untuk menemukan hal ini. Dan dia dianggap jenius. Einstein memberikan contoh untuk menunjukan efek perlambatan waktu yang dia sebut “paradoks kembar”. Seperti permainan penjelajah waktu. Mari kita mencobanya dengan menganggap ada 2 orang kembar bernama Eyne dan Stine. Dua2nya kita anggap berumur 10 tahun. Eyne memutuskan dia sudah bosan di bumi dan perlu liburan. Dia mendengar bahwa ada hal yang menarik di sistem bintang Alpha3, yang berjarak 25 tahun cahaya. Stine yang harus mengikuti ujian matematika minggu depan, harus tinggal di rumah untuk belajar. Jadi Eyne berangkat sendiri. Ingin sampai secepatnya di sana, dia memutuskan untuk berjalan dengan kecepatan 99,99% kecepatan cahaya. Perjalanan ke sistem bintang itu bolak balik membutuhkan waktu 50 tahun. Apa yang terjadi ketika Eyne kembali? Stine sudah 60 tahun, tapi Eyen masih berumur 10 ½ tahun. Bagaimana mungkin? Eyne sudah pergi selama 50 tahun tapi hanya bertambah umur ½ tahun! Hey, apakah Eyne baru saja menemukan mata air awet muda!

Ide Einstein tentang waktu yang melambat tampak benar dan semua adalah teori, tapi bagaimana kamu tahu kalau dia benar? Salah satu cara adalah dengan naik roket dan memacu roket itu mendekati kecepatan cahaya. Tapi sampai saat ini, kita belum bisa melakukannya. Tapi ada satu cara untuk mengetestnya. Bagaimana kita tahu kalau Einstein tidak salah? Percobaan ini mungkin bisa memberikan penjelasan atas idenya. Jam atom adalah jam yang sangat akurat, bisa mengukur satuan waktu yang sangat kecil. Sepersejutaan detik bisa diukur. Di tahun 1971, ilmuwan menggunakan jam ini untuk mengetest ide Einstein. Satu jam atom diset di atas bumi, dan satu lagi dibawa keliling dunia menggunakan pesawat jet dengan kecepatan 966 km/jam. Pada awalnya kedua jam itu diset agar menunjukan waktu yang sama. Apa yang terjadi ketika jam dibawa mengelilingi dunia dan kemudian kembali ke titik di tempat jam satunya lagi berada? Sesuai perkiraan Einstein, kedua jam itu sudah tidak menunjukan waktu yang sama. Jam yang sudah dibawa keliling dunia, menunjukan keterlambatan waktu seperberapa juta detik!

Kamu mungkin bertanya kenapa kok bedanya begitu kecil? Pertanyaan yang bagus! Yah, 966 km/jam cukup cepat, tapi masih belum mendekati kecepatan cahaya. Untuk melihat perbedaan waktu yang signifikan, kamu harus melaju dengan sangat lebih cepat.

Fisikawan Islam, Penemuan Sejati Kacamata

  • Posted: 00.18
  • |
  • Author: Unknown


 
Kacamata merupakan salah satu penemuan terpenting dalam sejarah kehidupan umat manusia. Setiap peradaban mengklaim sebagai penemu kacamata. Akibatnya, asal-usul kacamata pun cenderung tak jelas dari mana dan kapan ditemukan.
Lutfallah Gari, seorang peneliti sejarah sains dan teknologi Islam dari Arab Saudi mencoba menelusuri rahasia penemuan kacamata secara mendalam. Ia mencoba membedah sejumlah sumber asli dan meneliti literatur tambahan. Investigasi yang dilakukannya itu membuahkan sebuah titik terang. Ia menemukan fakta bahwa peradaban Muslim di era keemasan memiliki peran penting dalam menemukan alat bantu baca dan lihat itu.
Lewat tulisannya bertajuk The Invention of Spectacles between the East and the West, Lutfallah mengungkapkan, peradaban Barat kerap mengklaim sebegai penemu kacamata. Padahal, jauh sebelum masyarakat Barat mengenal kacamata, peradaban Islam telah menemukannya. Menurut dia, dunia Barat telah membuat sejarah penemuan kacamata yang kenyataannya hanyalah sebuah mitos dan kebohongan belaka.
''Mereka sengaja membuat sejarah bahwa kacamata itu muncul saat Etnosentrisme,'' papar Lutfallah. Menurut dia, sebelum peradaban manusia mengenal kacamata, para ilmuwan tdari berbagai peradaban telah menemukan lensa. Hal itu dibuktikan dengan ditemukannya kaca.
Lensa juga dikenal pada beberapa peradaban seperti Romawi, Yunani, Hellenistik dan Islam. Berdasarkan bukti yang ada, lensa-lensa pada saat itu tidak digunakan untuk magnification (perbesaran), tapi untuk pembakaran. Caranya dengan memusatkan cahaya matahari pada fokus lensa/titik api lensa.
Oleh karena itu, mereka menyebutnya dengan nama umum "pembakaran kaca/burning mirrors". ''Hal ini juga tercantum dalam beberapa literatur yang dikarang sarjana Muslim pada era peradaban Islam,'' tutur Lutfallah. Menurut dia, fisikawan Muslim legendaris, Ibnu al-Haitham (965 M-1039 M), dalam karyanya bertajuk Kitab al-Manazir (tentang optik) telah mempelajarai masalah perbesaran benda dan pembiasan cahaya.
Ibnu al-Haitam mempelajari pembiasan cahaya melewati sebuah permukaan tanpa warna seperti kaca, udara dan air. "Bentuk-bentuk benda yang terlihat tampak menyimpang ketika terus melihat benda tanpa warna". Ini merupakan bentuk permukaan seharusnya benda tanpa warna," tutur al-Haitham seperti dikutip Lutfallah.
Inilah salah satu fakta yang menunjukkan betapa ilmuwan Muslim Arab pada abadke-11 itu telah mengenali kekayaan perbesaran gambar melalui permukaan tanpa warna. Namun, al-Haitham belum mengetahui aplikasi yang penting dalam fenomena ini. Buah pikir yang dicetuskan Ibnu al-Haitham itu merupakan hal yang paling pertama dalam bidang lensa.
Paling tidak, peradaban Islam telah mengenal dan menemukan lensa lebih awal tiga ratus tahun dibandingkan Masyarakat Eropa. Menurut Lutfallah, penemuan kacamata dalam peradaban Islam terungkap dalam puisi-puisi karya Ibnu al-Hamdis (1055 M- 1133 M). Dia menulis sebuah syair yang menggambarkan tentang kacamata. Syair itu ditulis sekitar200 tahun, sebelum masyarakat Barat menemukan kacamata. Ibnu al-Hamdis menggambarkan kacamata lewat syairnya antara lain sebagai berikut:
''Benda bening menunjukkan tulisan dalam sebuah buku untuk mata, benda bening seperti air, tapi benda ini merupakan batu. Benda itu meninggalkan bekas kebasahan di pipi, basah seperti sebuah gambar sungai yang terbentuk dari keringatnya,'' tutur al-Hamdis.
Al-Hamdis melanjutkan, ''Ini seperti seorang yang manusia yang pintar, yang menerjemahkan sebuah sandi-sandi kamera yang sulit diterjemahkan. Ini juga sebuah pengobatan yang baik bagi orang tua yang lemah penglihatannya, dan orang tua menulis kecil dalam mata mereka.''
Syair al-Hamids itu telah mematahkan klaim peradaban Barat sebagai penemu kacamata pertama. Pada puisi ketiga, penyair Muslim legendaris itu mengatakan, "Benda ini tembus cahaya (kaca) untuk mata dan menunjukkan tulisan dalam buku, tapi ini batang tubuhnya terbuat dari batu (rock)".
Selanjutnya dalam dua puisi, al-Hamids menyebutkan bahwa kacamata merupakan alat pengobatan yang terbaik bagi orang tua yang menderita cacat/memiliki penglihatan yang lemah. Dengan menggunakan kacamata, papar al-Hamdis, seseorang akan melihat garis pembesaran.
Dalam puisi keempatnya, al-Hamdis mencoba menjelaskan dan menggambarkan kacamata sebagai berikut: "Ini akan meninggalkan tanda di pipi, seperti sebuah sungai". Menurut penelitian Lutfallah, penggunaan kacamata mulai meluas di dunia Islam pada abad ke-13 M. Fakta itu terungkap dalam lukisan, buku sejarah, kaligrafi dan syair.
Dalam salah satu syairnya, Ahmad al-Attar al-Masri telah menyebutkan kacamata. "Usia ua datang setelah muda, saya pernah mempunyai penglihatan yang kuat, dan sekarang mata saya terbuat dari kaca." Sementara itu,sSejarawan al-Sakhawi, mengungkapkan, tentang seorang kaligrafer Sharaf Ibnu Amir al-Mardini (wafat tahun 1447 M). "Dia meninggal pada usia melewati 100 tahun; dia pernah memiliki pikiran sehat dan dia melanjutkan menulis tanpa cermin/kaca. "Sebuah cermin disini rupanya seperti lensa,'' papar al-Sakhawi.
Inilah salah satu fakta yang menunjukkan betapa ilmuwan Muslim Arab pada abadke-11 itu telah mengenali kekayaan perbesaran gambar melalui permukaan tanpa warna. Namun, al-Haitham belum mengetahui aplikasi yang penting dalam fenomena ini. (SuaraMedia News)

Menyukai Fisika Lewat Imajinasi

  • Posted: 00.14
  • |
  • Author: Unknown


Berbicara tentang fisika dapat menimbulkan tanggapan yang beragam. Bukan gosip lagi kalau fisika merupakan salah satu "hantu" yang ditakuti oleh banyak pelajar, baik itu di tingkat menengah, umum, dan bahkan di perguruan tinggi. Sebagian orang menghafalkan rumus-rumus fisika layaknya buku sejarah tanpa menyadari maknanya. Ada juga yang pasrah karena menganggap fisika hanyalah milik orang-orang yang serius, cerdas, gila matematika, dan pada umumnya "kurang gaul". Bahkan, tidak sedikit yang beranggapan bahwa menjadikan fisika sebagai karir hidup adalah pilihan yang salah karena "masuknya" mudah tapi "keluarnya" susah. Dengan kata lain, menjadi mahasiswa fisika tidaklah sulit tapi lulusnya setengah mati dan kerjanya paling-paling menjadi guru atau kalau beruntung bisa menjadi dosen.
Beberapa pelajar mengagumi fisika karena membaca berita mengenai keberhasilan tim olimpiade fisika atau membaca buku tentang kehidupan para ilmuwan besar. Sayang, banyak juga yang hanya sebatas mengagumi tidak sampai menghayati atau mendalami fisika. Seringkali orang yang menguasai fisika dianggap sebagai orang "keren" sekaligus "aneh" karena mau belajar sesuatu yang sulit, padahal kalau jadi pengusaha bisa kaya-raya. Persepsi-persepsi demikian mengakibatkan masyarakat umum cenderung menggemari ilmu lain seperti metafisika. Disaat negara-negara lain berusaha untuk menyadarkan masyarakatnya agar tidak "gatek" alias gagap iptek negara kita melalui beberapa media massa tampaknya bekerja keras meyakinkan masyarakat agar tidak "gagib" atau gagap gaib. Padahal, penyampaian informasi ini menggunakan aplikasi fisika dan elektronika. Singkatnya, menemukan orang yang menyukai fisika bagaikan mencari jarum pentul didalam tumpukan jerami.
Banyak sekali pelajar atau mahasiswa yang sabar menunggu penayangan rumus-rumus fisika di papan tulis, kemudian mengerjakan soal-soal fisika. Dari pengalaman, soal-soal tersebut diselesaikan dengan cara "gotong-royong" karena hanya sedikit orang yang bisa atau mau mengerjakannya. Keberhasilan pengajaran tidak jarang didasarkan atas kemampuan mengerjakan soal-soal ujian akhir, bukan pada penguasaan makna fisis dari rumus tersebut.
Sebagai contoh, hampir semua orang di kelas tahu hukum kedua Newton, F = m.a, tetapi mungkin tak pernah terbayangkan bahwa rumus tersebut dapat menceritakan mengapa orang-orang gendut lebih suka main tarik tambang daripada lari 100 meter. Kemudian, siapa yang tak mengenal persamaan terkenal Einstein E = mc2 ? Sayang, sedikit sekali orang yang mengetahui bahwa massa sebuah buku fisika dasar mengandung energi yang dapat membawa suatu wahana antariksa ke bulan!
Salah satu penyebab persepsi negatif tentang fisika adalah bahwa ilmu tersebut seringkali diajarkan tanpa penghayatan sehingga terasa menyebalkan. Padahal, melalui fisika kita dapat mengetahui banyak hal. Seorang pelajar yang mulai mempelajari ilmu ini tidak perlu jauh-jauh mengunjungi laboratorium untuk melihat fenomena fisika. Kapanpun dan dimanapun ia dapat berimajinasi (menghayal) tentang lingkungan sekitarnya. Keindahan warna bunga yang tampak oleh mata, musik yang terdengar nyaman di telinga, air terjun yang memikat, aliran angin yang sejuk, adalah sedikit contoh dari fenomena fisika sehari-hari. Penjelasan bahwa setiap warna memiliki panjang gelombang yang berbeda-beda dan bahwa benda-benda menyerap serta meradiasikan panjang gelombang tertentu sehingga sampai ke mata kita, dapat dibaca dalam buku fisika. Akan tetapi seringkali orang tidak peduli dengan penjelasan itu karena tidak berimajinasi sehingga ia lupa akan keindahan alam dan tidak memiliki rasa ingin tahu.
Imajinasi lahir dari lingkungan yang mendukung seseorang agar memikirkan berbagai fenomena disekitarnya. Jika masyarakat sekitar atau keluarga di rumah tidak menghargai kebebasan berpikir maka daya imajinasi sulit untuk berkembang. Hampir semua fisikawan terkenal adalah orang-orang yang suka berimajinasi dan seringkali dikatakan sebagai pemikir "radikal" karena dianggap aneh oleh lingkungan yang seringkali bersifat dogmatis. Einstein adalah contoh populer dari orang yang suka berimajinasi dan mengembangkannya. Ia membayangkan bagaimana seandainya ia dapat bergerak dengan kecepatan cahaya. Pemikiran aneh ini menghasilkan teori relativitas khusus yang sampai kini masih digunakan. Hal yang sama dilakukan oleh Newton. Kalau saja ia tidak suka melamun dibawah pohon apel mungkin hukum gravitasi universalnya tidak ditemukan sampai berpuluh-puluh tahun kemudian.
Melalui imajinasi, kesadaran untuk mengamati fenomena alam dan membaca buku-buku fisika akan muncul dengan sendirinya. Sebagai contoh, molekul air (H2O) terdiri atas dua buah atom hidrogen dan sebuah atom oksigen. Kita tentu tidak mungkin melihat molekul air dengan mata telanjang. Akan tetapi, kita bisa berimajinasi bahwa molekul-molekul tersebut berukuran kecil sekali sehingga tak tampak. Oleh karenanya, jumlah molekul yang menyusun suatu benda haruslah sangat banyak. Melalui imajinasi kita tergerak untuk mempelajari bahwa satu mol molekul air (yang beratnya sekitar 18 gram) mengandung sekitar 6 x 1023 molekul. Jadi, satu sendok air ternyata terdiri atas sekitar 1022 molekul. Jumlah itu sangatlah besar. Jika seluruh penduduk indonesia diberi tugas untuk menghitung satu per satu molekul berbeda tiap 5 detik maka itu membutuhkan waktu bermiliar-miliar tahun!
Fisikawan tidak membuat rumus-rumus untuk dihafalkan atau ditulis pada telapak tangan. Rumus-rumus dibuat untuk memahami fenomena-fenomena alam dalam bentuk yang ringkas, indah, universal, dan berguna untuk menyelesaikan masalah yang menyangkut fenomena tersebut. Memang, fisika tidak mungkin terlepas dari matematika. Tanpa definisi matematis, fisika sangat sulit dikembangkan dan dimanfanfaatkan sebagai teknologi. Meskipun demikian, untuk mempelajari dasar-dasar fisika seseorang tidak perlu menjadi "gila" matematika ataupun menjadi serius dan takut tak dapat pacar karena "kurang gaul". Belajar fisika memang tidak mudah, tapi dengan melepaskan diri dari pemikiran yang dogmatis dan keinginan untuk berpikir bebas, imajinasi akan muncul dan bisa menjadi petualangan yang menyenangkan bagi siapapun.
Sungai Gorge di Afrika Selatan menyimpan keindahan tiada tara. Banyak sekali fenomena fisika yang membuat pemandangan diatas begitu mempesona: Hukum pemantulan dan pembiasan menghasilkan gambaran 'gunung terbalik' yang terlihat diatas permukaan sungai. Polarisasi cahaya matahari oleh molekul diudara memberikan pemandangan biru yang sangat serasi dengan warna hijau dan coklat muda. Tiupan angin akibat adanya perbedaan tekanan udara menggerakan dedaunan pohon secara terirama. Tampak seekor hewan mengkonsumsi makanan dan minuman untuk mempertahankan kehidupan, suatu proses mengurangi entropi (ketidakteraturan) dengan cara menambah energi dalam hewan. Bukankah fisika itu indah? (diambil dari Microsoft Reference Library 2003. Encarta)

Penemuan Terbaru Yang Menggegerkan Dunia Fisika Modern

  • Posted: 00.13
  • |
  • Author: Unknown


 
Tolong d!!! Dibaca. nanti diskusiin sma2, oke....
Belum lama berselang, tepatnya tanggal 5 Juni yang lalu, suatu berita besar iptek muncul dari sebuah konperensi fisika “Neutrino 98? yang berlangsung di Jepang. Neutrino, salah satu partikel dasar yang jauh lebih kecil daripada elektron, ternyata memiliki massa, demikian laporan dari suatu tim internasional yang tergabung dalam eksperimen Super-Kamiokande.
Tim ahli-ahli fisika yang terdiri dari kurang lebih 120 orang dari berbagai negara termasuk AS, Jepang, Jerman, dan Polandia tersebut melakukan penelitian terhadap data-data yang dikumpulkan selama setahun oleh sebuah laboratorium penelitian neutrino bawah tanah di Jepang.
Jika laporan ini terbukti benar dan dapat dikonfirmasi kembali oleh tim lainnya maka akan membawa dampak yang sangat luas terhadap beberapa teori fisika, terutama pembahasan mengenai interaksi partikel dasar, teori asal mula daripada alam semesta ini serta problema kehilangan massa (missing mass problem) maupun teori neutrino matahari.
Neutrino, atau neutron kecil, adalah suatu nama yang diberikan oleh fisikawan dan pemenang hadiah Nobel terkenal dari Jerman: Wolfgang Pauli. Neutrino adalah partikel yang sangat menarik perhatian para fisikawan karena kemisteriusannya. Neutrino juga merupakan salah satu bangunan dasar daripada alam semesta yang bersama-sama dengan elektron, muon, dan tau, termasuk dalam suatu kelas partikel yang disebut lepton. Lepton bersama-sama dengan enam jenis partikel quark adalah pembentuk dasar semua benda di alam semesta ini.
Ditemukan secara eksperimental pada tahun 1956 (dalam bentuk anti partikel) oleh Fred Reines (pemenang Nobel fisika tahun 1995) dan Clyde Cowan, neutrino terdiri dari 3 rasa (flavor), yakni: neutrino elektron, neutrino mu dan neutrino tau. Neutrino tidak memiliki muatan listrik dan selama ini dianggap tidak memiliki berat, namun neutrino memiliki
antipartikel yang disebut antineutrino. Partikel ini memiliki keunikan karena
sangat enggan untuk berinteraksi. Sebagai akibatnya, neutrino dengan
mudah dapat melewati apapun, termasuk bumi kita ini, dan amat sulit untuk
dideteksi.
Diperkirakan neutrino dalam jumlah banyak terlepas dari hasil reaksi inti pada matahari kita dan karenanya diharapkan dapat dideteksi pada laboratorium di bumi. Untuk mengurangi pengaruh distorsi dari sinar kosmis, detektor neutrino perlu ditaruh di bawah tanah. Dengan mempergunakan tangki air sebanyak 50 ribu ton dan dilengkapi dengan tabung foto (photomultiplier tube) sebanyak 13 ribu buah, tim Kamiokande ini menemukan bahwa neutrino dapat berosilasi atau berganti rasa. Karena bisa berosilasi maka disimpulkan bahwa neutrino sebenarnya memiliki massa.
Penemuan ini sangat kontroversial karena teori fisika yang selama ini kerap dipandang sebagai teori dasar interaksi partikel, yakni disebut teori model standard, meramalkan bahwa neutrino sama sekali tidak bermassa. Jika penemuan neutrino bermassa terbukti benar maka boleh jadi akan membuat teori model standard tersebut harus dikoreksi.
Penemuan neutrino bermassa juga mengusik bidang fisika lainnya yakni kosmologi. Penemuan ini diduga dapat menyelesaikan problem kehilangan massa pada alam semesta kita ini (missing mass problem). Telah sejak lama para ahli fisika selalu dihantui dengan pertanyaan: Mengapa terdapat perbedaan teori dan pengamatan massa alam semesta? Jika berat daripada bintang-bintang, planet-planet, beserta benda-benda alam lainnya dijumlahkan semua maka hasilnya ternyata tetap lebih ringan daripada berat
keseluruhan alam semesta.
Para ahli fisika menganggap bahwa terdapat massa yang hilang atau tidak kelihatan. Selama ini para ahli tersebut berteori bahwa ada partikel unik yang menyebabkan selisih massa pada alam semesta. Namun teori semacam ini memiliki kelemahan karena partikel unik yang diteorikan tersebut belum pernah berhasil ditemukan.
Dari hasil penemuan tim Kamiokande ini dapat disimpulkan bahwa ternyata partikel unik tersebut tidak lain daripada neutrino yang bermassa.
Menurut teori dentuman besar (Big Bang) alam semesta kita ini bermula dari suatu titik panas luar biasa yang meledak dan terus berekspansi hingga saat ini. Fisikawan Arno Penzias dan Robert Wilson (keduanya kemudian memenangkan hadiah Nobel fisika tahun 1978) pada tahun 1965 menemukan sisa-sisa gelombang mikro peninggalan dentuman besar yang sekarang telah mendingin hingga suhu sekitar 3 Kelvin. Namun salah satu hal yang masih diperdebatkan adalah masalah ekspansi alam semesta itu sendiri. Apakah hal ini akan terus menerus terjadi tanpa akhir? Penemuan neutrino bermassa diharapkan akan bisa menjawab pertanyaan yang sulit ini.
Bayangkan suatu neutrino yang sama sekali tidak bermassa, seperti yang diperkirakan selama ini. Gaya gravitasi tentu tidak akan berpengaruh sama sekali pada partikel yang tidak memiliki berat. Namun apa yang terjadi jika neutrino ternyata memiliki berat? Dalam jumlah yang amat sangat banyak neutrino-neutrino ini tentu akan bisa mempengaruhi ekspansi alam semesta. Tampaknya ada kemungkinan ekspansi alam semesta suatu saat akan terhenti dan terjadi kontraksi atau penciutan kembali jika ternyata
neutrino memiliki massa.
Terakhir masih ada satu lagi problem fisika yang akan diusik oleh hasil penemuan ini yaitu problem neutrino matahari, dimana terjadi selisih jumlah perhitungan dan pengamatan neutrino yang dihasilkan oleh matahari kita.
Untuk keabsahan penemuan ini tim internasional dari eksperimen super Kamiokande dalam laporannya juga mengajak tim-tim saintis lainnya untuk mengkonfirmasi penemuan mereka. Namun menurut pengalaman di masa lalu, laporan osilasi neutrino dan neutrino bermassa selalu kontroversi dan jarang bisa dikonfirmasi kembali.
Untuk sementara ini para ahli harus sabar menunggu karena eksperimen semacam ini hanya bisa dilakukan oleh segelintir eksperimen saja di seluruh dunia. Yang pasti jika hasil penemuan ini memang nantinya terbukti benar maka jelas dampaknya akan sangat terasa pada beberapa teori fisika modern.

Termometer - Sistem Pengukuran Suhu

  • Posted: 00.03
  • |
  • Author: Unknown

Termometer adalah alat untuk mengukur suhu. Termometer Merkuri adalah jenis termometer yang sering digunakan oleh masyarakat awam. Merkuri digunakan pada alat ukur suhu termometer karena koefisien muainya bisa terbilang konstan sehingga perubahan volume akibat kenaikan atau penurunan suhu hampir selalu sama.

Alat ini terdiri dari pipa kapiler yang menggunakan material kaca dengan kandungan Merkuri di ujung bawah. Untuk tujuan pengukuran, pipa ini dibuat sedemikian rupa sehingga hampa udara. Jika temperatur meningkat, Merkuri akan mengembang naik ke arah atas pipa dan memberikan petunjuk tentang suhu di sekitar alat ukur sesuai dengan skala yang telah ditentukan. Skala suhu yang paling banyak dipakai di seluruh dunia adalah Skala Celcius dengan poin 0 untuk titik beku dan poin 100 untuk titik didih.

Termometer Merkuri pertama kali dibuat oleh Daniel G. Fahrenheit. Peralatan sensor panas ini menggunakan bahan Merkuri dan pipa kaca dengan skala Celsius dan Fahrenheit untuk mengukur suhu. Pada tahun 1742 Anders Celsius mempublikasikan sebuah buku berjudul “Penemuan Skala Temperatur Celsius” yang diantara isinya menjelaskan metoda kalibrasi alat termometer seperti dibawah ini:
  1. Letakkan silinder termometer di air yang sedang mencair dan tandai poin termometer disaat seluruh air tersebut berwujud cair seluruhnya. Poin ini adalah poin titik beku air.
  2. Dengan cara yang sama, tandai poin termometer disaat seluruh air tersebut mendidih seluruhnya saat dipanaskan.
  3. Bagi panjang dari dua poin diatas menjadi seratus bagian yang sama.
Sampai saat ini tiga poin kalibrasi diatas masih digunakan untuk mencari rata-rata skala Celsius pada Termometer Merkuri. Poin-poin tersebut tidak dapat dijadikan metoda kalibrasi yang akurat karena titik didih dan titik beku air berbeda-beda seiring beda tekanan.
Cara Kerja :
  1. Sebelum terjadi perubahan suhu, volume Merkuri berada pada kondisi awal.
  2. Perubahan suhu lingkungan di sekitar termometer direspon Merkuri dengan perubahan volume.
  3. Volume merkuri akan mengembang jika suhu meningkat dan akan menyusut jika suhu menurun.
  4. Skala pada termometer akan menunjukkan nilai suhu sesuai keadaan lingkungan.
Sumber :
Fred Landis Microsoft Encarta Reference Library 2005
http://en.wikipedia.org/wiki/Thermometer

Fisika di Balik Keindahan Bulu Merak

  • Posted: 00.01
  • |
  • Author: Unknown

 
Tak seorang pun yang memandang corak bulu merak kuasa menyembunyikan kekaguman atas keindahannya. Satu di antara penelitian terkini yang dilakukan para ilmuwan telah mengungkap keberadaan rancangan mengejutkan yang mendasari pola-pola ini.
Para ilmuwan Cina telah menemukan mekanisme rumit dari rambut-rambut teramat kecil pada bulu merak yang menyaring dan memantulkan cahaya dengan aneka panjang gelombang. Menurut pengkajian yang dilakukan oleh fisikawan dari Universitas Fudan, Jian Zi, dan rekan-rekannya, dan diterbitkan jurnal Proceedings of the National Academy of Sciences, warna-warna cerah bulu tersebut bukanlah dihasilkan oleh molekul pemberi warna atau pigmen, akan tetapi oleh struktur dua dimensi berukuran teramat kecil yang menyerupai kristal.
Zi dan rekan-rekannya menggunakan mikroskop elektron yang sangat kuat untuk menyingkap penyebab utama yang memunculkan warna pada bulu merak. Mereka meneliti barbula pada merak hijau jantan (Pavo rnuticus). Barbula adalah rambut-rambut mikro yang jauh lebih kecil yang terdapat pada barb, yakni serat bulu yang tumbuh pada tulang bulu. Di bawah mikroskop, mereka menemukan desain tatanan lempeng-lempeng kecil berwarna hitam putih, sebagaimana gambar di sebelah kanan. Desain ini tersusun atas batang-batang tipis yang terbuat dari protein melanin yang terikat dengan protein lain, yakni keratin. Para peneliti mengamati bahwa bentuk dua dimensi ini, yang ratusan kali lebih tipis daripada sehelai rambut manusia, tersusun saling bertumpukan pada rambut-rambut mikro. Melalui pengkajian optis dan penghitungan, para ilmuwan meneliti ruang yang terdapat di antara batang-batang tipis atau kristal-kristal ini, berikut dampaknya. Alhasil, terungkap bahwa ukuran dan bentuk ruang di dalam tatanan kristal tersebut menyebabkan cahaya dipantulkan dengan beragam sudut yang memiliki perbedaan sangat kecil, dan dengannya memunculkan aneka warna. 
"Ekor merak jantan memiliki keindahan yang memukau karena pola-pola berbentuk mata yang berkilau, cemerlang, beraneka ragam dan berwarna," kata Zi, yang kemudian mengatakan, "ketika saya memandang pola berbentuk mata yang terkena sinar matahari, saya takjub akan keindahan bulu-bulu yang sangat mengesankan tersebut." Zi menyatakan bahwa sebelum pengkajian yang mereka lakukan, mekanisme fisika yang menghasilkan warna pada bulu-bulu merak belumlah diketahui pasti. Meskipun mekanisme yang mereka temukan ternyata sederhana, mekanisme ini benar-benar cerdas. 
Jelas bahwa terdapat desain yang ditata dengan sangat istimewa pada pola bulu merak. Penataan kristal-kristal dan ruang-ruang [celah-celah] teramat kecil di antara kristal-kristal ini adalah bukti terbesar bagi keberadaan desain ini. Pengaturan antar-ruangnya secara khusus sungguh memukau. Jika hal ini tidak ditata sedemikian rupa agar memantulkan cahaya dengan sudut yang sedikit berbeda satu sama lain, maka keanekaragaman warna tersebut tidak akan terbentuk. 
Sebagian besar warna bulu merak terbentuk berdasarkan pewarnaan struktural. Tidak terdapat molekul atau zat pewarna pada bulu-bulu yang memperlihatkan warna struktural, dan warna-warna yang serupa dengan yang terdapat pada permukaan gelembung-gelembung air sabun dapat terbentuk. Warna rambut manusia berasal dari molekul warna atau pigmen, dan tak menjadi soal sejauh mana seseorang merawat rambutnya, hasilnya tidak akan pernah secemerlang dan seindah bulu merak. 
Telah pula dinyatakan bahwa desain cerdas pada merak ini dapat dijadikan sumber ilham bagi rancangan industri. Andrew Parker, ilmuwan zoologi dan pakar pewarnaan di Universitas Oxford, yang menafsirkan penemuan Zi mengatakan bahwa penemuan apa yang disebut sebagai kristal-kristal fotonik pada bulu merak memungkinkan para ilmuwan meniru rancangan dan bentuk tersebut untuk digunakan dalam penerapan di dunia industri dan komersial. Kristal-kristal ini dapat digunakan untuk melewatkan cahaya pada perangkat telekomunikasi, atau untuk membuat chip komputer baru berukuran sangat kecil.
Jelas bahwa merak memiliki pola dan corak luar biasa dan desain istimewa, dan berkat mekanisme yang sangat sederhana ini, mungkin tidak akan lama lagi, kita akan melihat barang dan perlengkapan yang memiliki lapisan sangat cemerlang pada permukaannya. Namun, bagaimanakah desain memesona, cerdas dan penuh ilham semacam ini pertama kali muncul? Mungkinkah merak tahu bahwa warna-warni pada bulunya terbentuk karena adanya kristal-kristal dan ruang-ruang antar-kristal pada bulunya? Mungkinkah merak itu sendiri yang menempatkan bulu-bulu pada tubuhnya dan kemudian memutuskan untuk menambahkan suatu mekanisme pewarnaan padanya? Mungkinkah merak telah merancang mekanisme itu sedemikian rupa sehingga dapat menghasilkan desain yang sangat memukau tersebut? Sudah pasti tidak. 
Sebagai contoh, jika kita melihat corak mengagumkan yang terbuat dari batu-batu berwarna ketika kita berjalan di sepanjang tepian sungai, dan jika kita melihat pula bahwa terdapat pola menyerupai mata yang tersusun menyerupai sebuah kipas, maka akan muncul dalam benak kita bahwa semua ini telah diletakkan secara sengaja, dan bukan muncul menjadi ada dengan sendirinya atau secara kebetulan. Sudah pasti bahwa pola-pola ini, yang mencerminkan sisi keindahan dan yang menyentuh cita rasa keindahan dalam diri manusia, telah dibuat oleh seorang seniman. Hal yang sama berlaku pula bagi bulu-bulu merak. Sebagaimana lukisan dan desain yang mengungkap keberadaan para seniman yang membuatnya, maka corak dan pola pada bulu merak mengungkap keberadaan Pencipta yang membuatnya. Tidak ada keraguan bahwa Allahlah yang merakit dan menyusun bentuk-bentuk mirip kristal tersebut pada bulu merak dan menghasilkan pola-pola yang sedemikian memukau bagi sang merak. Allah menyatakan Penciptaannya yang tanpa cacat dalam sebuah ayat Al Qur'an: 
Dialah Allah Yang Menciptakan, Yang Mengadakan, Yang Membentuk Rupa, Yang Mempunyai Nama-Nama Yang Paling baik  Bertasbih KepadaNya apa yang ada di langit dan di bumi.  Dan Dialah Yang Mahaperkasa lagi Maha Bijaksana. (QS. Al Hasyr, 59:24)
FIsika-Heboh

mixpod musik

ym... an

band favorit se INDONESIA RAYA??

Y messengger..???

cari artinyeee di sini

ng'cHAt.. bukan ngeCaaat

SCRIPT CHATTING DI SINI
[+] [x]

Recent Posts-

Flickr Photostrem-

100_3495 100_3492 100_3475 100_3491 100_3493 100_3486 100_3541 100_3605 100_3814 100_3365 100_3519 100_3224 100_3649 100_3800 100_3412 100_3559 100_3425 100_3567

C--BOX^^-

maenn yoo..-

Blog Games